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In the system 

B ~ F ~ I - ~ R U ~ O ~ ~ ,  3 phases, sepd. by immiscibility gaps, are 
present: an Fe-rich phase ( x  = 0-0.75) with hexagonal BaTiOst 
structure (6H; sequence ( h c c ) ~ ) ,  a Ru-rich phase ( x  = 0.9) of: 
hexagonal 4H-type (sequence (hc)~) ,  and the pure Ru compd. 

. BaRuOs with rhombohedral 9R structure (sequence (hhcI3). BY 
vibrational spectroscopic investigations in the 6H phase * 
transition from n-type semiconduction (Fe-rich 0-deficient 
compds.) to good, metal-like conduction (Ru-rich compds. With 
complete 0 lattice) can be detected. The 4H and 9R stacking 
polytpes are good, metal-like conductors. The lattice parametem 1 
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THE BARIUM IRON RUTHENIUM OXIDE SYSTEM 

S. Kemmler-Sack* and A .  Ehmann 
Institut fir Anorganische Chemie der Universitat TGbingen 
Auf der Morgenstelle 18, D-7400 Tubingen, West Germany 

Introduction /366** 

Stoichiometric BaFe03 can only be prepared at high oxygen 
pressures; it crystallizes in the rhombohedral 12-layer type 
(reaction rate R?m [l, 21). An isotopic compound with a phase 
breadth BaFe02.75-2.90 was similarly obtained under 
pressurized oxygen by Zanne and Gleitzer [3]. Compounds with 
deficient oxygen form at standard pressure: BeFe03-y. For 
y < 0.5, perovskiet is produced with cubic, tetragonal, 
monoclinic, or triclinic deformations, depending on the 
conditions of formation, along with compounds with hexagonal 
BaTi03 structure [4-91. The latter are formed by heating a 
stoichiometric mixture of BaC03 and Fe203, which has 
previously been heated to 1100-12OO0C, to temperatures between 
650 and 850'C [7 ,  81. The hexagonal BaTi03 type (6H; sequence 
(hcc) 2)  has a phase breadth of BaFe02.67-2.95, for which the 
lattice constants decline with decreasing oxygen deficiency 
[7]. According to neutron diffraction studies of 6H-BaFe02.79 
[ 8 ] ,  the majority of oxygen lattice defects are located in the 
hexagonally packed layers (Ba02.5 composition) , while 
stoichiometric Ba02.835 is present in the cubically packed 
layers; tetrahedral coordination could thereby be produced for a 

part of the iron in the flatly connected double tetrahedrons 
[ 8 1 .  On the other hand, the corresponding Ru compound, 
BaRuOj, can be produced stoichiometrically at even standard 
pressure; it crystallizes in a rhombohedral 9-layer structure 
(9R: sequence (hhc) [lo]) 

~ ~~ 

*Author to whom correspondence should be addressed. 
**Numbers in the margin indicate pagination in the foreign text. 
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Previously in the BaFel-xRux03-y system, a quaternary 
oxide which belongs to the 6H type, Ba3FeRu209 (x = 
0.667), could be formed [ill. Further studies showed that this 
reaction involves a member of an extended 6H phase (x = 0 to 
0.75); in addition, a compound with hexagonal 4-layer structure 
(4H, sequence (hc)2) exists for x = 0.9. The phase 
relationships and property variations in the BaFel-xRux03-y 
series are given. 

/367 - 

Experimental Part 

Initial products were BaC03 (p.A.; Merck), Fe203 ( 2 0  
2 m / g  of Fe(C0)5; BASF), and Ru (99.97%; Heraeus). 

alumina, Degussit A1 2 3 ,  served as crucible material. 
Sintered 

Concentrations were fixed at 22.2'C with n-octane as 
sealing fluid. 

To produce radiographs (Cu Ka-radiation), Philips 
Corporation used a recording goniometric counter tube. The IR 
(infrared) spectra (KBr compacts; 4000-250 cm range) were 
recorded with a Beckman spectrograph IR 20A, and the FIR (far 
infrared) spectra (polyethylene compacts, 650-50 cm ) with a 
Fourier device from the company Bruker IFS 114c. Raman spectra 
could not be obtained from the black compounds. 

-1 

-1 

To determine the oxidation level, about 150 mg of the 
substance under a C02 stream in a closed apparatus were 
exposed to concentrated HC1 (p.A.), the resulting C12 was 
collected in an ice-cooled KI solution, and the formed I2 was 
titrated with 0.1 n Na2S203 solution with intensity as an 
indicator. 
subsequently performed. 

A gravimetric determination of Ba as BaS04 was 
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Production and Structure 

To make the exclusively black preparations of the 
Ru 0 system, the mixture of BaC03, Fe203, BaFel-x x 3-y 

and Ru was carefully pulverized in an agate mortar, heated in 
air inside a corundum crucible, and finely repulverized one or 
two days later; the reaction process was monitored 
radiographically. On the Fe-rich side (x 5 0.2),  heating at 
900-11OO'C for two to three days followed by heating at lower 
temperatures (700-800'C; two to ten days) was shown to be 
effective for producing the 6H phases' of interest, while the 
materials richer in Ru (x = 0.333 to 0.75) were heated at 
800-9OO'C for a full 6 days and at 1000-1100°C for six to ten 
d.ays. Experiments for the example where x = 0.667 showed that 
longer heating at low temperatures (lOOO'C), as well as briefer 
heating at higher temperatures (1300'C), does not affect purity, 
cell dimensions, or oxygen content. However, a preparation 
richer in Fe (x = 0.45) was similarly homogeneous after heating 
at 1300'C for three days but showed a greater oxygen deficiency 
(y = 0.125; average oxidation level +3.75 in comparison to y = 
0.06 after heating at lOOO'C), whereby the lattice constants 
increased to a = 5.733 angstroms and c = 14.10 angstroms. 

In the Ru-rich range (x = 0.8 to l.O), after six to eight 
repetitions of two-day heating to 1300'C, another compound with 
4H structure, whose isolation was achieved in material with x = 

0.9 after a total of 7 x 2 days at 1300*C, formed beside the 
member of the 6H phase richest in Ru, BaRu03. 
hand, counting-tube recordings of preparations with lower Ru 
levels (x = 0.89; 0.88) always show weak indications of the 
strongest 6H reflexes, and those of preparations with higher Ru 
levels (x = 0.92; 0.95) always weakly show the most intensive 9R 
lines of BaRu03. 

On the other 

~~ ~~ ~ ~ 

No tests were conducted to prodnce compounds with cubic, 
tetragonal, or monoclinic perovskite structure by heating longer 

at lower temperatures. 

1 
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According t o  r a d i o g r a p h i c  s t u d i e s ,  p r e p a r a t i o n s  w i t h  x = 0 

t o  0.75, 0 .9 ,  and 1.0 a r e  homogeneous. L a t t i c e  c o n s t a n t s ,  
a n a l y s i s  d a t a ,  and c o n c e n t r a t i o n  v a l u e s  a re  g i v e n  i n  Table  I. 

For  x = 0 t o  0.75, compounds i n  t h e  6 H  s t r u c t u r e  
c r y s t a l l i z e .  The c e l l  dimensions f o r  x = 0 are approx ima te ly  
e q u a l  t o  t h e  l i s t e d  v a l u e s  of Mori [71  f o r  a b o u t  t h e  same 1368 

TABLE I 

Lattice Constants (angstroms) ,a Average Oxydation Level, Barium 

Content and Concentration Values in the System BaFel-xR~xOg,y 

- 
Average Ba (%I S (g/cm') 

Oxidation 
CSlC. X 0 C Level mas. calc. reas. - 
6,032 0 s,a, 1 4 , ~  +3,55 57.9 57.81' - 
6,01,b 0,Ol 5.68, 14,4 +3,48 57.6 57.83' - 

+3.57 57.7 57.22' 5.8, 6.05.b 
6, I 1.b 0.1 5.69, 14.4 +3,61 57,O 56,61* - 
6.24,' 0.2 5,704 14.0, +3,75 55.4 55.33' - 
6,35,* 
W2, 0.45 5.72, 14,OZ +3,88 52.6 52JI 6.2, 
6 5 4  o s  5.731 14.07 + 3,98 51.9 52.06 - 

0,667(11) 5.74 14.0, +4,01 50.5 50.62 ' 6.3. 6,77, 
0.75 5.72, l 4 , 4  +4.04 50.0 49,92 6.4, 6.84 

631, 

0.05 5.69, 14.4 

0,333 5.74 14,4 +3,85 53.7 53,85* 6,1* 

0.9 5.73, 9.51, r r 48.72 6.6, 

a 
+0.002 - ( a ) ;  - -  +0.005 (SI. 
calculated with consideration of experimentally determined oxygen 

deficiency. 

insoluble in mineral acids. 

o x i d a t i o n  l e v e l .  As x i n c r e a s e s ,  a i n c r e a s e s  a t  f i r s t  and t h e n  

p r o g r e s s e s  th rough  a f l a t  maximum f o r  x approx ima te ly  equal  t o  
0.5; however, t h e  c measurements do n o t  change much. The 
a v e r a g e  o x i d a t i o n  l e v e l  of i r o n  and ru thenium,  which m u s t  amount 
t o  +4.CC f o r  a coi i ipletely f i l l e d  oxygeii l a t t i c e  
(BaFel-xRux03),  f a l l s  below t h i s  v a l u e  on t h e  F e - r i c h  
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side; i.e., there is an oxygen deficiency. With increasing x, 
the average oxidation number rises, and consequently the oxygen 
content increases; with +3.98 for x = 0.5, the limiting value of 
+4.00, which is maintained up to x = 0.75, is practically 
reached. Pycnometric densities determined in the 6H region lie 
in the range of error of the values calculated for 6 

Ru 0 f ormular units. BaFel-x x 3-y 

The counting-tube recording of x = 0.9 is subject to 
complete, hexagonal labeling with a = 5.734 angstroms and c = 

9.510 angstroms (see the labeling in Table 11). A 4-layer 
structure results from the magnitude of c: for 2.38 angstroms 
the average distance between layers, L = c/4, lies in the normal 
range (see, for example, [12]). For the configuration of the 
densely packed barium-oxygen layers, there is only one 
possibility ( ( h ~ ) ~ ;  reaction rate P63/mmc E131). 

the first time, isotypy is to be assumed for the high 
temperature modification of the localized 4H type [141 of 
BaMn03. 
the oxygen level, there could be no phase breadth, since, on the 
one hand, the 4H lattice constants determined for the two-phase 
products lie within the range of error limits for the listed 
values, and, on the other hand, the thermal treatment (open air 
quenching from 1300 'C  to room temperature; oven cooling within 
one day to 200°C as well as 3-day heating to 800'C and 7-day to 
600'C) has no measurable effect. The pycnometric densities are 
close to the value calculated for 4 formular units. 

Thus, for 

With respect to the Fe:Ru proportions, as well as to 

Pure Ru bonding can acquire no recognizable Fe components. 
For a = 5.750 angstroms and c = 21.60 angstroms, lattice /369 
constants defined in the two-phase, Fe-poorer products correspond 
to the values listed for BaRu03 (a = 5.75 angstroms and c = 

21.60 angstroms [lo] ) . 
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TABLE I1 
X-ray in t e r f e rence  of BaGe0.1Ru0,g02 (5 = 0.9) ;  
Counter tube recording with CuK-alpha r ad ia t ion ;  -- 

Hexagonal: a = 5.734 + 0.002 angstroms; c = 9.510 + 0.005 angstroms - - - - 
S b V  x l(r Sin'l x l(r 

Inl' rneas. calc. hkl Int' meas. calc. hkl - 
I 24 1 ' 241 ti 100 m 2888 2887 ai 220 

I16 Sl 503 504 ti 102 SSSS 3082 3083 PI 
LSSS 590 591 ti 003 SSSS 3099 3099 a1 

s1 832 832 ti 103 m - r  334 1 3341 az 

m - s  1050 1050 aI oo4 SS 3409 3407 a, 
S 1056 IO55 a, m - r  3718 3718 ai 313 . 

m - sl 123 1 1231 SSS ' 3937 3936 aI 117 
m 1291 1290a1 104 3937 aI 224 

4046 216 m - sl 1553 1553a1 203 m - r  4046 

402 rsy ! 9 5  6 210 t :::2 4112 al 

SS 307 307 ti 101 m - s  2901 2902 

3324 2151206 SSl 722 723 ti 110 m 3324 

sss 1030 1030 ti 20 1 S , 3391 339001 312 

SI 1225 1225 41 202 S 3735 3737 a) 

m - s  1297 1297 a: SSW 3959 3956 Q: 1171224 

m 1561 1561 a, I 4065 4066 a) 

SSSS 1771 1771 a1 ss 4132 4132 U) 
I 

LSSS 1781 1780 0; 1 I4 SS 4176 4177 314207 1 

m 1883 1881 QI 105 m 4198 4198 a, 3141207 I 

m - r  1891 . 1890 a, 4198 41 008 
m - s 4220 42194: 008 212 
I 4441 4439a1 108 

m 2177 2176 111 S 4766 4768 Q I  315 

m 2286 2286 US s - ss 4833 4834 QI 322 

m 1947 1947 a1 
m - r  1956 1956 a, 
m - r  201 1 2012a1 204 4440~1 403 
s ' 2020 2022 a1 SS 4462 4461 US 108 
m - sl 2167 2165a1 3oo 4462~1 403 

m - SI 2275 2275 41 213 SS 4791 4792 a) 

SSSS 2360 2362 (18 1151006 ss 4857 4858 a, 
us) 2374 2373a; 006 ss 4898 48994, 4041217 

2374 a, 115 m - r 4921 4929 aI 118 

4924~) 404 2602 2051106 i 
4923~1 217 

m - r  2615 2615 US 
m - s  2735 2734~1 214 S 4944 4945 (12 118 

2603 

S 2748 2747 a, rn - r 5054 5053a1 410 
I 5077 5978 a, 

I a st = s t rong;  m = medium; s = weak; sst = very s t rong;  ss = very weak, e t c .  

Vibrational Spectroscopic Research 

A differentiation between metal-like, conductive, oxidic 
solids and semiconductors or insulators can be made with /370 
vibrational spectroscopic nethods, since the former groiip shows 
a continuous absorption throughout the IR while the second group 
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shows discrete oscillations [15-201; as expected, it absorbs 
throughout the IR [201. In contrast, the pure Fe-phase, 
6H-BaFeO 
indicated by Diagram 1, the required discrete oscillations for 
6H-BaFe02.775 (x = 0 )  appear in the IR. 

shows semiconductivity of n-type [ 4 ] .  As 3-y' 

Diagram 1 shows the IR spectra of some bonds of the 

continuous absorption is observed--analagous to BaRu03-- 
indicative in both cases of conductivity similar to that of a 
metal. 

Ru 0 system. For the Ru-rich phase (x = 0.9), a BaFel-x x 3-y 

In the 6H range (x = 0 to 0.75), striking differences can 
be seen as a function of x in the IR spectra: starting with the 
pure Fe bond, the spectra show clearly separated bands up to x = 

0.33. The structuring already regresses for x = 0.5; for x = 

0.667, its presence is only suggested; and for x = 0.75, its 
disappearance is virtually complete. Thus the transition from a 
semiconductor (x = 0 )  to a metal-like conductor (x = 0.75) is 
shown by the spectra. In comparison, a systematic progression 
of the band positions with respect to x cannot be established 
(see Table 111). 

Moreover, it is noteworthy that no bands appear in the 
higher frequency range for bonds with oxygen deficiencies (x < 
0.5). In the presence of Fe04 tetrahedrons, which are 
discussed by Jacobson for 6H-BaFe02.79 in the case of an 
ordered distribution of defects [81, their highest frequency 
IR-active oscillation would be expected at about 700-800 cm'l 
[23]--similar to that of M04 tetrahedrons in 11-IV and I-11-V 
spinels. 

A factor group analysis is necessary for the band 
configuration on the Fe-rich side. Assuming a statistical 

/ 7 7 1  distributicx ~f Fe and Ru, as well as oxygen and defect , 4 , A  

sites (reaction rate P63/mmc: Ba(1) in 2b, BA(2) in 4f; 
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DIAGRAM 1 

IR Spectra 

x =o 

x= $1 

x =Q2 

x = 0,333 

X = 0.5. 

x = $667 

x =0,75 
x z0.9 

TABLE 111: IR Spectraa;  Band Pos i t i on  (cn-l)  

a sh = shoulder;  st = s t rong;  b = breadth 

IO 



Fe and Ru in 2a and 4f; 0 and a in 6h and 12k), it offers, for 
k = 0, the irreducible preparations [241 

and, after deduction of Ba translations, as well as the acoustic 
branch, 

(AI, + BI, + €1, + 

(Bl# + 

+ U s u  + BW + & + EN) 

+ A Z U  + El.) 

the following oscillations within the framework of Fe- and 
Ru-oxygen octahedrons: 

I 
n ! 

Thus 10 IR-active oscillations are expected within the 
octahedral framework. 

Given a lack of couplings, separation of frequencies of the 
octahedral framework from the barium translations can be 
undertaken, since the latter are always found as characteristic 
oscillations in a similar frequency range (100-150 [ 2 5 ]  ) . 
Spectra of the Fe-rich bonds show a relatively intensive band in 
this range at approximately 150 cm next to a weaker shoulder 
at approximately 90 cm . For x = 0.1 to 0.333, two further, 
distinctly separated band groups (range 180-410 cm-l and 
430-660 cm-l) are adjoined here, and these could be coordinated 
with the ranges of the IR-active, asymmetric deforming and 
stretching vibrations. Accordingly, nine to ten of the ten 
oscillations predicted by the factor group analysis would be 

-1 
-1 
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observable (Table 111). Above all, the question remains whether 
the intensive band at approximately 150 cm" actually 
corresponds to a pure translation of barium, The observed 
structuring in the low-frequency region also could represent the 
result of couplings between translations and energy-poor 
framework vibrations of the same type. If this is the case, an 
increase of couplings with decreasing x may be inferred from the 
separation around approximately 180 cm-l which becomes less 
and less distinct with increasing Fe content (x 5 0.33). 

Discussion 

Among the applied reaction conditions in the BaFel-xRuxOj-y 
system, there are three hexagonal perovskite stack variants of 
differing sequence, each separated from the others by two-phase 
reg ions : 

x = 0 to 0.75: 6H; 

x = 0.9: 4H; 

x = 1.0: 9R; 

With rising Ru levels, the 

sequence (hcc) 2; 
33.3% h-bonding, 
sequence (hc) 2; 
50% h-bonding, 
sequence (hhc) 3; 
66.7% h-bonding. 

proportion of h-packed layers per 
sequence increases. In the same direction, the average layer 
separation L increases from about 2.35 angstroms (6H) through 
2.38 angstroms (4H) to 2.40 angstroms (9R). The increase of L 
results from the fact that each h-stacking implies face-coupled 
linkage of the octahedrons, which leads to a shorter separation 
between the central metal ions in comparison to corner-coupled 
linkage (for c-stacking). The cations attempt to avoid this 
electrostatically unfavorable configuration ( 3 r d  Pauling rule) 
by moving away from t h e  octahedral centers, thus increasing tne 
separation distance, so that a growing h-proportion is 
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accompanied by lattice extension. Even systems with only one 
transition metal (e.9. BaMn03-7 [26] and Bal-xSrxMn03-y 
[27]) show a similar process. 

Since the stacking sequences with large h-proportions first 
system with high Ru levels, in /372 appear in the BaFel-xRux03-y - 

which case a metal-like conductivity is already present, there 
is the impression that the collective, electrostatically 
unfavorable h-bonding is additionally stabilized by electron 
delocalization. Apparently only precious metal electrons can 
participate in the metal-like conductivity--as in many other 
polynary oxides with precious metal--and 3d ions [19]. In 
contrast, the pure Fe-phase of 6H-type belongs to the 
semiconductors. Semiconductivity is maintained during insertion 
of smaller Ru proportions up to x = approximately 0.333. An 
oxygen deficiency is always present, and consequently the 
possibility of n-conductivity is given. After insertion of 
about 50% Ru, the disappearance of the oxygen deficiency is 
practically complete. The observable changes in the IR spectra 
opposite x = 0.333 can be explained by the appearance of a 
second, metal-like conductivity mechanism which predominates 
over the first type, i.e., semiconductivity, and whose 
proportion rises strongly to x = 0.75. With this composition, 
modification of the band structure within the 6H phase 
corresponding to x = approximately 0.5 appears to be finished; 
further insertion of ruthenium is avoided upon formation of a 
new structure (4H). The breakdown of the 6H structure for x <  
0.75 could be explained by the already large number of 
conducting electrons supplied by the ruthenium which is no 
longer suitable for the stacking sequence with only 33.3% 
h-coupling. A relationship between the formed crystal structure 
and the available number of conducting electrons would 
consequently be expected. However, only further research can 
offer proof of this. 
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